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Critical fronts in initiation of excitation waves
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We consider the problem of initiation of propagating waves in a one-dimensional excitable fiber. In the
FitzHugh-Nagumo theory, the key role is played by “critical nucleus” and “critical pulse” solutions whose
(center-) stable manifold is the threshold surface separating initial conditions leading to propagation and those
leading to decay. We present evidence that in cardiac excitation models, this role is played by “critical front”

solutions.
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I. INTRODUCTION

An excitable medium is a thermodynamically nonequilib-
rium system that has a stable spatially uniform “resting
state,” but responds to an above-threshold localized stimulus
by a propagating nondecaying “‘excitation wave.” Excitation
waves play key roles in living organisms and are observed in
chemical and physical systems: e.g., nerves, heart muscle,
catalytic redox reactions, large aspect lasers, and star forma-
tion in galaxies [1]. Understanding conditions of successful
initiation of excitation waves is particularly important for the
heart where such waves trigger coordinated contraction of
the muscle and where a failure of initiation can cause or
contribute to serious or fatal medical conditions, or render
inefficient the work of pacemakers or defibrillators [2].

The theoretical understanding of excitability stems from
FitzHugh’s simplified model of a nerve membrane [3]. One
of his key concepts is a“‘quasithreshold,” which gets precise
in the limit of large time scale separation between the pro-
cesses of excitation and recovery. Then the fast subsystem
has unstable “threshold” equilibria. Initial conditions below
such an equilibrium lead to decay, and those above it lead to
excitation.

In a spatially extended FitzHugh-Nagumo (FHN) system
[3,4], the ability of a stimulus to initiate a wave depends also
on its spatial extent, the aspect summarized by Rushton’s [5]
concept of “liminal length.” More generic is the concept of
“critical curve” in the stimulus strength-spatial extent plane
(see Fig. 1). A stimulus initiates a wave if its parameters are
above this curve or leads to decay if below.

Mathematically, the problem is about classification of ini-
tial conditions that will or will not lead to a traveling-wave
solution. The key question is the nature of the boundary be-
tween the two classes. A detailed analysis of this boundary
has been done for the FitzHugh-Nagumo system and its
variations. This has led to the concept of a critical nucleus,
discussed below in more detail. Roughly, this is a spatially
extended analog of a threshold equilibrium in the point sys-
tem: the critical nucleus is also a stationary but unstable so-
lution, and its small perturbations lead to either initiation of
an excitation wave, for perturbations of one direction, or to
decay, for perturbations of the opposite direction.

We stress that although the role of FHN as a universal
prototype of excitable systems has been disputed, to our
knowledge, there are still no alternatives to the critical
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nucleus concept, as far as the initiation problem is con-
cerned.

In this paper, we present evidence that cardiac excitation
provides an example of an alternative type of system, in
which there is no place for the critical nucleus. Two indepen-
dent observations led to this study. First, numerical simula-
tions of the cardiac excitation models reveal significant
qualitative differences in the way initiation occurs in such
models, compared to the FHN-style systems [6]. Second,
asymptotic analysis of detailed cardiac excitation models re-
veals that in the fast subsystem there, there is no analog of
the unstable threshold equilibrium of FHN systems [7], and
the threshold there has a completely different mathematical
nature. Further, elementary arguments show that in cardiac
equations there are no nontrivial stationary solutions that
could play the role similar to the critical nucleus in FHN
system.

Thus we have a theoretical vacuum here. Obviously, one
cannot even begin to think about investigating initiation cri-
teria without understanding the nature of the critical solu-
tions. This paper aims to fill this vacuum and clarify the
nature of the critical solutions. We analyze a simplified
model of cardiac excitation and use the knowledge of its
exact solutions to demonstrate that for this model the concept
of the critical nucleus should be replaced with the concept of
a critical front. We also confirm numerically the relevance of
this concept on an example of a detailed ionic cardiac exci-
tation model.

II. FITZHUGH-NAGUMO SYSTEM

First we recapitulate some known theoretical concepts re-
lated to initiation of waves (see, e.g., [8,9] and references
therein). We consider the FitzHugh-Nagumo system in the
form

utzuxx-l'f(u)_v;
fu)=u(u-0)(1-u),

v,=e(au-v), (1)

where ¢ >0, >0, 6&(0,1/2) (some works consider piece-
wise linear functions f of similar shape) on a half-fiber,
(x,1)€[0,0) X[0,%) with a no-flux boundary,
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FIG. 1. (Color online) Initiation of excitation in the FitzHugh-Nagumo system. (a),(b) Full system (1)—(3) “FHN” for parameter values
a=0.37, 6=0.13, and £=0.02. Stimulation parameters: xg;;,=2.10 for both below threshold ug;,,=0.43, leading to decay, for (a) and above
threshold  uy;,=0.44, leading to initiation of excitation propagation, for (b). (c),(d) Fast subsystem (4)—(6) “ZFK”: same
parameters as in (a),(b) except £=0. Stimulation: xy;,=2.10 for both below threshold ug;,=0.330 483 1 for (c) and above-threshold
Ugim=0.330 483 3 for (d). Bold black lines: initial conditions. (¢) The corresponding critical curves, separating initiation initial conditions
from decay initial conditions. Simulation done on an interval xE[0,L], L=120 with Neuman boundaries, central space differencing with

h,=0.15, and explicit Euler time stepping with /#,=0.01.

u,(0,1) =0, 2)

and a rectangular initial perturbation of width x;,, and am-
plitude ug;y,,

M(.X,O) = ustim®(xstim - )C) ’

v(x,0)=0, (3)

where O(-) is the Heaviside step function.

Figures 1(a) and 1(b) show two typical results of the ini-
tiation process: a successful initiation, leading to generation
of a propagating pulse, and an unsuccessful, leading to decay
of excitation in the whole half-fiber into the resting state.

If £=0, the problem (1) and (3) reduces to an initiation
problem for the Zeldovich-Frank-Kamenetsky (ZFK) equa-
tion [10], also known as the Nagumo equation [11],

u,=u, + f(u), 4)
u,(0,1) =0, (5)
M(X,O) = ustim@)(xstim - )C). (6)

Figures 1(c) and 1(d) illustrate the initiation and its failure in
this reduced problem. Instead of a propagating pulse, suc-
cessful initiation produces a propagating front. In the full
model with small g, this front is followed, in time scale
O(e7™Y), by a wave-back to form a full excitation pulse.

A key role in understanding initiation belongs to an un-
stable nontrivial bounded time-independent solution of (4)
and (5), sometimes called a crifical nucleus, by analogy with
phase transition theory. Such a solution is unique; for a cu-
bical nonlinearity f as in (1), this solution has the form
U () =30\2[(1+ 0)\2+cosh(x\0)\2—=50+ L. TIts linear-
ization spectrum has exactly one unstable eigenvalue, while
all other eigenvalues are stable. So the stable manifold of this
stationary solution has codimension 1 and divides the phase
space of (4) and (5) to two open sets. One of these sets
corresponds to initial conditions leading to successful initia-
tion and the other to decay. In particular, if the initial condi-
tion satisfies u(x,0) <u,(x), x E[0,), then u(x,?) decays as
t—oo, and if wu(x,0)>u.(x), xE[0,%), then u(x,) ap-

proaches a stable propagating front solution. Moreover, if a
continuous one-parametric family of initial conditions con-
tains some that initiate a wave and some that lead to decay,
then there is always at least one that does neither, but gives a
solution that approaches the critical nucleus. This critical
nucleus is the same for all such families; e.g., it does not
depend on the shape of the initial distribution u(x,0) as long
as its amplitude is at the threshold corresponding to that
shape. Initial conditions very close to the threshold generate
solutions which approach the critical nucleus and then depart
from it, either toward propagation or toward decay. This
transient stationary state can be seen in Figs. 1(c) and 1(d)
where the initial conditions are selected very close to the
threshold.

For small £>0, system (1) does not have nontrivial sta-
tionary solutions. However, for x € (—w,%) Eq. (1) has an
unstable propagating pulse solution i1, (x—ct), 0 (x—ct) such
that i7,(x) — u(x), T,(x) —0, and c=0(g'"?) as £\,0. Due
to translational symmetry, this solution (in the comoving
frame of reference) has a zero eigenvalue corresponding to
the eigenfunction (i,,0,,). This solution also has a single
unstable eigenvalue. So its center-stable manifold has codi-
mension 1 and is the threshold hypersurface dividing the
phase space into the decay domain and the initiation domain.
So here we have a critical pulse solution, which we define as
an unstable traveling wave that is asymptotic to the resting
state for both limits x—ct— +o. For small ¢, the critical
pulse is essentially a slowly traveling variant of the critical
nucleus. Any solution with the initial condition at the thresh-
old hypersurface will asymptotically approach this critical
pulse (suitably shifted), and any solutions starting close to
the threshold will approach this critical pulse as a transient.’
This is illustrated in Fig. 2.

"The symmetry x < —x means there are two stable pulse solutions,
one propagating to the right and one propagating to the left. Like-
wise, there are two critical pulse solutions, and two center-stable
manifolds. The relationship between these two critical hypersur-
faces is complicated, since some families of initial conditions can
generate two oppositely traveling pulses and some can generate
only one.
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FIG. 2. (Color online) The critical pulse is a universal transient for any near-threshold initial condition. The solutions to (1) for slightly
below-threshold (a),(c) and slightly above-threshold (b),(d) amplitudes, for smaller stimulus width x;,,=2.10 in (a),(b) and larger Xy
=10.05 in (c),(d). Parameter values: €=0.02, ®=0.37, h,=0.01, h,=0.15, and L=120. Stimulus amplitudes: uy;,,=0.431 929 399 574 766 for
(a), 0.431 929 399 574 768 for (b), 0.191 802 079 312 694 for (c), and 0.191 802 079 312 696 for (d). In all cases we see a slow, low-
amplitude unstable propagating pulse which subsequently either decays or evolves into a fast, high-amplitude stable propagating pulse.

With this understanding, the excitation condition in terms
of (Xyim»Ugim) Teduces to computing the intersection of the
two-parametric manifold described by (3) with the
codimension-1 stable (center-stable) manifold of the critical
nucleus (critical pulse). This gives the curve on the
(Xgim» Usim) Plane separating initial conditions leading to ex-
citation propagation from those leading to decay. This can be
done numerically or, with appropriate simplifications, ana-
lytically. An example of dealing with this problem in the
ZFK equation, using Galerkin-style approximations, can be
found in [12]. Here we concentrate on the principal question
of the nature of the threshold hypersurface in the functional
space for cardiac excitation equations. It appears that in car-
diac equations, this nature is different from the FitzHugh-
Nagumo theory just considered.

III. SIMPLIFIED CARDIAC EXCITATION MODEL

Now we consider the simplified model of Iy,-driven ex-
citation fronts in typical cardiac excitation models proposed
in [13]:

E,=E, +®(E-1)h,

h,=[O(-E)-h]/T, (7)
with boundary condition
E(0,0)=0 (8)
and initial condition

E()C, 0) =-—a+ Estim(xstim - x) >

h(x,0)=1, )

where the variable E represents the transmembrane potential
of the cardiac tissue, h is the probability of the Na gates
being open, 7 is a dimensionless parameter, and a>>0 repre-
sents the prefrontal voltage, which we consider fixed in this
paper. System (7) can be obtained by simplifying right-hand
sides of the fast subsystem in an appropriate asymptotic limit
of a typical cardiac excitation model [14]. In that sense, sys-
tem (7) plays the same role for a typical cardiac excitation
model as ZFK equation (4) plays for a classical activator-
inhibitor excitable system like (1).

System (7) does not have nontrivial bounded stationary
solutions: if E,=h,=0, then any bounded solution has the
form E=a, h=0O(-a), a=const. So there are no critical nu-
clei in this system. Nevertheless, system (7) gives propagat-
ing front solutions for initial conditions above a threshold
and decay for those below it. Hence there is a question: what
happens when the initial condition is exactly at the thresh-
old?

System (7) has a family of propagating front solutions:

2

w—
1+ 7c?

exp(i) z=-A),
TC
(Z = _A)’

E(z) =
—a+ aexp(-cz)

o) = exp(i) (z=0),
1 (z=0),

(10)

where z=x—ct, w=1+7c*(a+1), and A:%ln(HTa) and pa-
rameters ¢, «, and 7 are related by

e’ In[(1 + &)+ 7 H]+In(1 + ™) =0.

(11)

For a fixed a, there is a 7.(a) such that for 7> 7,, Eq. (11)
has two solutions for c¢: c=c.(a,7) and ¢, >c_ [13]. There is
numerical and analytical evidence that solutions with c=c,
are stable and those with c=c_ are unstable with one positive
eigenvalue [13,15].

Hence by analogy with the FHN system, we propose the
following.

Conjecture 1. The center-stable manifold of the unstable
front solution (10) with c=c_(a, 7) is the threshold hypersur-
face, separating the initial conditions leading to initiation
from the initial conditions leading to decay.2

That is, instead of a critical nucleus or a critical pulse
solution, the role of the threshold solution is played by a
“critical front,” which we define as a traveling-wave solution
with different asymptotics at x—ct— +% and x—ct— —o: the
prefrontal state and the postfrontal state.

2Again, symmetry x < —x implies there are actually two hypersur-
faces, partly connected with each other.
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FIG. 3. (Color online) Evolution of two different near-threshold
initial conditions toward the critical front solution in system (7).
Initial stimuli: xg;,=0.3, Egim=12.716 330 706 144 868 (upper
row) and xgn=1.5, Egm=2.619 968 799 545 055 (lower row).
Other parameters: 7=8.2, a=1, h,=0.075, h,=0.0025, and L=50.

An “experimentally testable” consequence of this conjec-
ture is that for any initial condition exactly at the threshold,
the solution will approach the unstable front as r— +. For
any initial condition near the threshold, the solution will
come close to the unstable front and stay in its vicinity for a
long time: if the positive eigenvalue is A and the initial con-
dition is &, close to the threshold, the transient front should
be observed for time of the order of \~!|In &|. This transient
front solution will not depend on the initial condition, as long
as the initial condition is at the threshold.

We have tested these predictions by numerical simulation
of (7)—(9). The results are shown in Figs. 3 and 4.

Figure 3 illustrates two solutions starting from initial con-
ditions with different x;,, values. In both cases, E;,, values
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FIG. 4. (Color online) Transient critical fronts are close to the
unstable front solution of (7). Initial conditions: xg;,=1.5, with
Eyin=2.619968 799 545055 in the wupper row and Eg,
=2.619 968 799 545 054 in the lower row, other parameters the
same as in Fig. 3. Left column: evolution of the E profiles in the
laboratory frame of reference. Middle column: same evolution, in
the frame of reference comoving with the front. Right column:
speed of the front. Blue (green) dashed lines in the middle and right
columns correspond to the exact fast (slow) front solutions of (7).
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have been chosen close to the respective thresholds with high
precision. In both cases, the solutions evolve in the long run
toward the same propagating front.

Figure 4 presents an analysis of a pair of solutions, one
with slightly above-threshold and the other with slightly
below-threshold initial conditions. To separate the evolution
of the front shape from its movement, we employed the idea
of symmetry group decomposition with explicit representa-
tion of the orbit manifold (see, e.g., [16]). Practically, we
define the front point x;=x/(t) via

E(ef),1) =E,

for some constant E, which is guaranteed to be represented
exactly once in the front at every instant of time (we have
chosen E,=0). Then E(x—x/(t),t) gives the voltage profile
“in the standard position” and x/(#) describes the movement
of this profile.

The predictions based on conjecture 1 are that the voltage
profile should, after an initial transient depending on the ini-
tial condition, approach the profile of the slow unstable front
solution given by (10) with c=c_(7, @) and stay close to it for
some time, before either developing into the fast stable front
(10) with c=c,(7, @) or decaying. Likewise, the speed of the
front should, after an initial transient, be close to the speed of
the slow unstable front c_(7, ), before either switching the
speed of the fast stable front ¢, (7, @) or dropping to zero.
This is precisely what is seen in Fig. 4, where we have taken
advantage of knowing the exact solutions E(x—c.f) and c,
for both the fast and slow fronts.

Initial conditions with different x;,, and Eg;,, close to the
corresponding threshold produce the same picture with the
exception of the initial transient. We have also checked that
the length of the time period during which the solution stays
close to the unstable front is, roughly, a linear function of the
number of correct decimal figures in Eg;,, as it should be
according to conjecture 1.

IV. DETAILED CARDIAC EXCITATION MODEL

The simplified model (7) is quantitatively very far from
any realistic ionic model of cardiac excitation and has many
peculiar qualitative features stemming from the nonstandard
asymptotic embedding leading to it. Hence the newly de-
scribed phenomenon of critical front could be an artifact of
the simplifications. To eliminate this possibility, we have
tested the relevance of the critical front concept to a full
ionic model of cardiac excitation. We have chosen the model
of human atrial tissue due to Courtemanche, Ramirez, and
Nattel (CRN) [17], which is less stiff than a typical ventricu-
lar or Purkinje fiber model, is well formulated in a math-
ematical sense, and is popular among cardiac modelers. This
model operates with 21 dynamic variables including the
transmembrane voltage V. We have used the default param-
eter values as described in [17] and supplemented the equa-
tion for V in the ordinary differential equations system with a
diffusion term D V/dx>. As the spatial scale is not impor-
tant for the question at hand, we assumed D=1. The initial
conditions for V were taken in the form
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FIG. 5. (Color online) Critical fronts in the CRN model [17].
Shown are voltage profiles in every 10 ms. Parameter values:
h,=0.01 ms, h,=0.2, and L=40, the length unit chosen so that volt-
age diffusion coefficient equals 1. Stimulus width xg;,,=2, stimulus
amplitudes: Vi, =29.315422 993 071 52 mV (left panel) and
Veim=29.315 422 993 071 53 mV (right panel). The critical fronts
are formed within the first 10 ms and then are seen for the subse-
quent 80 ms on both panels before exploding into an excitation
wave of much larger amplitude and speed in the right panel and
decaying in the left panel.

V()C,O) = Vr + Vstim®('xstim - )C) P

where V,=—81.18 mV is the standard resting potential, and
for all other 20 variables at their resting values as described
in [17]. Figure 5 illustrates a pair of solutions with initial
conditions slightly above and slightly below the threshold.
The critical front solution is clearly seen there: it has the
upper voltage of about —46 mV and during 80 ms of its
existence propagates with a speed approximately 0.06 space
units per millisecond. Then for the above-critical case it de-
velops into an excitation front with maximal voltage about
+3 mV and speed 0.8 space units per millisecond, and de-
cays for the below-critical case.

Mathematically, the post-front voltage of about —46 mV
observed in Fig. 5 is not a true equilibrium of the full CRN
model, so the critical front can only be an asymptotic con-
cept in an appropriate asymptotic embedding, say as ones
described in [14] or [18], and the observed critical front may
well be the front of a critical pulse solution in the full model.
However Fig. 5 demonstrates that the critical front is a prac-
tical and well-working concept even for the full model, un-
like the critical pulse, which may be theoretically existing,
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but practically unobservable: notice the number of significant
decimal digits in initial conditions required to produce only
the critical front observed for 80 ms and recall that the num-
ber of decimals is roughly proportional to the duration of the
observation of an unstable solution.

V. DISCUSSION

We have presented numerical evidence that the center-
stable manifold of the unstable slow front solution of the fast
subsystem of a cardiac excitation model serves as the thresh-
old hypersurface separating initial conditions leading to suc-
cessful initiation and those leading to decay. This means,
e.g., that a critical curve for a two-parametric family of ini-
tial conditions, be that family (9) with parameters
(Xgim» Egim) OF any other, can be found as an intersection of
this codimension-1 critical hypersurface with the two-
dimensional manifold of those initial conditions. Finding this
hypersurface can be done numerically or analytically using
suitable approximation—e.g., as was done in [12,19] for the
ZFK equation; this is a subject for further investigation.

Another problem for future study is to verify that the find-
ings remain qualitatively true for formal asymptotic embed-
dings of various cardiac excitation models and, in particular,
which mathematical features of these embeddings are essen-
tial for the existence of the critical fronts. Of principal im-
portance is the conclusion that for cardiac equations, instead
of the “critical nucleus” or its slowly moving variant “critical
pulse” known from the FitzHugh-Nagumo theory, we now
have a “critical front solution.” This, in particular, means
physically that the make-or-break conditions of cardiac exci-
tation waves are restricted to a vicinity of their fronts.

Finally, we believe that this study sets a useful example
for initiation problems in other types of excitable systems,
alternative to the existing critical nucleus theory, since not
all, if any, real-world excitable systems are well described by
an asymptotic structure as in (1).
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